Rangkaian Lampu LED Sepeda Motor 2x20

Rangkaian Lampu LED Sepeda Motor ini sangat sederhana yang hanya menggunakan beberapa komponen saja tapi hasilnya sangat memuaskan. Konsumsi dayanya sangat kecil cukup 6 Volt saja sangat  cocok untuk sepeda motor anda.
The 555 circuit below is a flashing bicycle light powered with four C,D or AA cells (6 volts). Two sets of 20 LEDs will alternately flash at approximately 4.7 cycles per second using RC values shown (4.7K for R1, 150K for R2 and a 1uF capacitor). Time intervals for the two lamps are about 107 milliseconds (T1, upper LEDs) and 104 milliseconds (T2 lower LEDs). Two transistors are used to provide additional current beyond the 200 mA limit of the 555 timer. A single LED is placed in series with the base of the PNP transistor so that the lower 20 LEDs turn off when the 555 output goes high during the T1 time interval. The high output level of the 555 timer is 1.7 volts less than the supply voltage.

Circuit  Project: 40 LED Bicycle Light

Adding the LED increases the forward voltage required for the PNP transistor to about 2.7 volts so that the 1.7 volt difference from supply to the output is insufficient to turn on the transistor. Each LED is supplied with about 20mA of current for a total of 220mA. The circuit should work with additional LEDs up to about 40 for each group, or 81 total. The circuit will also work with fewer LEDs so it could be assembled and tested with just 5 LEDs (two groups of two plus one) before adding the others.

Source: http://www.diyelectronicsprojects.com/

LED Effects Schematic Diagrams

Rangkaian LED Berjalan 24 kanal. It is 24 channel light illumination. The schematic is very simple – 24 LED’s, 1 MCU and some additional components. The main principle is dynamic indication, which is usually implemented for control of 7-segment digital indicators. Here is the same, as for indicators are used traditional 5-mm LED’s.
For control unit is implemented not expensive MCU ATTYNI2313 (Atmel), which can drive direct LED (up to 20 mA on each pin). As you can see on the schematic, 24 LED’s are grouped in 4 groups, each one consist 6 LED’s. LED’s in group 1 indicate the content of register r0 of MCU, LED’s in group 2 – r1, LED’s in group 3 – r3 and LED’s in group 4 indicate the content of register r3. Dynamic indication do this, as in each moment of time indicates content of one register and scans them consecutive. For instance, when the content of r1 is loaded in output port (PORTB), the transistor Q2 is switched "ON", and the LED of group 2 indicate the bits in r1.
There are 3 buttons – "F", "+" and "-". The button F is for change of effect, and buttons "+" and "–" are for increasing or decreasing the speed of effect. For example, each time when you press button "-" changing of lights go more slowly. For fast changing of speed you can press and hold the appropriate button.
The speed of effects is independent of speed of dynamic indication, which is constant.
The schematic can be powered by any DC adapter for 8 to 15 V / 100mA. I use 12V adapter and for the stabilizer 7805 there is no need of heat sink for them – this is one of advantages of implementation of dynamic indication. Others advantages are simple schematic and PCB, lower pin count of MCU etc.
Software is written in assembler of IDE AVRStudio 4. The program code is below. There are a lot of comments for explanation how the program works. With simple changes in code everyone can make different effects and/or add them. Each effect can be up to 24 stages.
If the LED pins are made longer with additional wires, LED effects can be used for Christmas tree or for advertising text on shop window (for instance). If there is need, LED number can be easy increased up to 32 LED’s and stages. Enjoy!
Schematic




source: http://www.electronics-lab.com

Rangkaian Alarm Sepeda Motor Sederhana

Alarm Motor Sederhana- Setelah saya amati keinginan para pembaca saya mencoba menyimpulkan bahwa kebanyakan pembaca mayoritas menyukai rangkaian yang sederhana semisal Alarm sepeda motor ini yang saya kutip dari dytoshareforum.forumotion.net. Rangkaian Alarm ini sangat sederhana sekali, siapapun pasti bisa memasangnya. Silahkan disimak....
       Alarm berguna untuk menghindari terjadinya pencurian sepeda motor. Berikut ini akan saya tuliskan bagaimana membuat alarm sendiri. Sirine dari alarm keamanan adalah menggunakan klakson yang sudah ada pada motor anda.

Cara kerja dari alarm yang saya buat ini adalah mematikan arus CDI sehingga mesin tidak dapat dihidupkan. Apabila kunci kontak dipaksa berada pada posisi ‘ON’ maka klakson akan berbunyi secara terus menerus walaupun kunci kontak dikembalikan pada posisi ‘OFF’ klakson akan tetap berbunyi. Hal ini pasti akan membuat sang pencuri menjadi panik dan memilih untuk kabur, hahaha...

Alat yang perlu disiapkan:
1. Solder dan timah
2. Gunting
3. Isolasi kabel

Bahan yang perlu disiapkan:
1. Saklar (switch) 3 kaki..........Rp 2.500
2. Relay 4 kaki......................Rp 15.000
3. Soket relay.......................Rp 5.000
4. Kabel 3 meter....................Rp 4.500

Diagram kelistrikan alarm:


Memasang saklar alarm:
Saklar alarm diletakkan pada daerah yang sulit dijangkau yaitu dibawah jok, seperti pada gambar dibawah. Potong kabel negatif CDI yang berwarna hitam bergaris putih, lalu sambungkan ke saklar alarm yang berkaki 3. Perhatikan posisinya!! Kabel dari cdi menuju ke saklar dipasang pada kaki nomer 1 (pinggir) sedangkan kabel dari potongan cdi menuju bodi itu dipasang pada kaki nomer 2 (tengah). Kemudian siapkan kabel panjang pada kaki nomer 3 (pinggir) menuju klakson, biarkan dahulu kita lanjut langkah memasang relay dulu yee..


Memasang relay:
Pasang relay pada soketnya, satukan kaki nomer 86 dengan kabel panjang dari saklar alarm yg tadi telah disiapkan, kemudian sambung ke negatif klakson (kabel klakson berwarna hijau). Sambung kaki nomer 30 dan 85 menjadi satu, lalu disambung ke positif klakson (kabel klakson berwarna oranye). Kaki nomer 87 dipasang ke aki, yaitu kabel merah pada soket berwarna hijau.


Pengetesan:
Selesai merakit rangkaian diatas, ada baiknya kita melakukan pengetesan sistem alarm yang kita buat itu.

Pertama, posisikan saklar alarm berada pada posisi OFF, kemudian nyalakan kunci kontak pada posisi ON (seharusnya tidak terjadi apa2). Kemudian hidupkan mesin (seharusnya mesin dapat hidup dengan sempurna), lakukan pengetesan pada klakson, teeet teeet teeet (seharusnya klakson dapat berfungsi normal). Jika semua terasa baik kemudian matikan kunci kontak pada posisi OFF.

Kedua, posisikan saklar alarm berada pada posisi ON, kemudian nyalakan kunci kontak pada posisi ON (seharusnya klakson akan berbunyi). Kemudian coba hidupkan mesin (seharusnya mesin tidak dapat dihidupkan). Langkah terakhir adalah mematikan kunci kontak ke posisi OFF (seharusnya klakson akan tetap berbunyi, berbunyi, dan teruuus berbunyi...)

Langkah terakhir adalah mematikan bunyi klakson alarm yang sanggup membuat telinga bergetar, bergetar dan bergetar... Cabut kunci kontak, buka jok, kemudian matikan alarm dengan memindahkan saklar alarm ke posisi OFF.

Demikian ulasan tentang uraian singkat sistem alarm pada sepeda motor. Semoga bermanfaat gan, Thanks...

http://dytoshareforum.forumotion.net

Line Follower ROBOT Controlled by 2051

Kuskel Robot- This Robot use two motors control  rear wheels and the single front wheel is free. It has 4-infrared sensors on the bottom for detect black tracking tape, when the sensors detected black color, output of  comparator, LM324 is low logic and the other the output is high.
Microcontrollor AT89C2051 and H-Bridge driver L293D were used  to control direction and speed of motor.
Fig 1. Circuit diagram of my Robot.

Fig 2. Circuit diagram of Infrared sensors and comparators.

Fig 4. Position of sensors,  left hand side is side view and right hand side is top view.
Software
Software for write to AT89C2051 is robot1.hex ,which was written by C-language ,the  source code is robot1.ccompiled by using MC51 in TINY model with my start up code robot.asm .
MPEG files
Sample of competition between 2051 and 68HC11.

  • movie1.mpg (1,303kB)

  • movie2.mpg (373kB)

  • Source : www.kmitl.ac.th
    Contact Owner : plermjai@loxinfo.co.th

    7-Segment Digital Clock Circuit

    Skema Rangkaian Jam Digital

    Kumpulan Skema Elektronika- Jam Digital dengan Seven Segmen. The Clock Controller V1.1was designed to be an exemplary of using 'C' language to control timer0interrupt, 7-segment LED and keypad scanning. It provides 1-bit sink currentdriving output, for driving a relay, opto-triac, say. Many projects requiring7-segment display and keypad interfacing may get the idea from the Clockcircuit and software.

    Hardware
    Figure 1 shows a circuitdiagram of the Clock Controller V1.1. P10-P1.7 drives 7-segment commonanode LED with sink current. P3.0-P3.3 also drives a base pin of 4-PNPtransistor, 2n2907 with sink current. As shown in the figure, the 2nd 2-digitLED that connected to P3.2 and P3.3 is rotated 180 degrees to the 1st 2-digitallowing the pt. segment to be used for 1 second blinking. P3.0-P3.3 alsoconnects four momentary switches while the other legs are tied to inputport P3.4. During display and key switch scanning, a logic '0' is shiftedfrom P3.0 to P3.3,  if there was a key pressed, P3.4 then became low.P3.7 is a 1-bit sink current driving, an example in the circuit uses a2n2907 to drive a small electromechanical relay 5V, say.

    Source: http://www.kmitl.ac.th

    High Quality Intercom

    Skema Rangkaian Interkom Kualitas Tinggi
    Kumpulan Skema Elektronika- Interkom Kualitas Tinggi. This circuit consists of two identical intercom units. Each unit contains a power supply, microphone preamplifier, audio amplifier and a Push To Talk (PTT) relay circuit. Only 2 wires are required to connect the units together. Due to the low output impedance of the mic preamp, screened cable is not necessary and ordinary 2 core speaker cable, or bell wire may be used.

    The schematic can be broken into 34 parts, power supply, mic preamp, audio amplifierand PTT circuit. The power supply is designed to be left on all the time, which is why no on / off switch is provided. A standard 12 V RMS secondary transformer of 12VA will power the unit. Fuses are provided at the primary input and also secondary, before the rectifier. The 1 A fuse needs to be a slow blow type as it has to handle the peak rectifier current as the power supply electrolytics charge from zero volts.

    The microphone amplifier is a 2 transistor direct coupled amplifier. BC108B transistors will work equally well in place of the BC109C transistors. The microphone used is a 3 terminal electret condenser microphone insert. These are popular and require a small current to operate. The preamp is shown in my audio circuit section as well, but has a very high gain and low distortion. The last transistor is biased to around half the supply voltage; this provides the maximum overload margin for loud signals or loud voices. The gain may be adjusted with the 10k preset. Sensitivity is very high, and a ticking clock can easily be heard from the distantloudspeaker.

    The amplifier is based on the popular National Semiconductor LM380. A 50 mV input is all that's required to deliver 2W RMS into an 8 ohm loudspeaker. The choice of loudspeaker determines overall sound quality. A small loudspeaker may not produce a lot of bass, I used an old 8 inch radio loudspeaker. The 4.7u capacitor at pin 1 of the LM380 helps filter out any mains hum on the power supply. This can be increased to a 10u capacitor for better power supply rejection ratio.

    The push to talk (PTT) circuit is very simple. A SPDT relay is used to switch between mic preamplifier output or loudspeaker input. The normally closed contact is set so that each intercom unit is "listening". The non latching push button switch must be held to talk. The 100u capacitor across the relay has two functions. It prevents the relays back emf from destroying the semiconductors, and also delays the release of the relay. This delay is deliberate, and prevents any last word from being "chopped" off.

    Setting Up and Testing
    This circuit does not include a "call" button. With this intercom pressing the Push to Talk button sends your voice to the opposite station, and vice versa. Setup is simple, set to volume to a comfortable level, and adjust the mic preset while speaking with "normal volume" from one meter away. You do not need to be in close contact with the microphone, it will pick up a conversation from anywhere in a room. If the units are a long way away, there is a tendency for the cable to pick up hum, or radio interference. There are various defenses against this. One way is to use a twisted pair cable, each successive turn cancels the interference from the turn before. Another method is to use a small capacitor of say 100n between the common terminal of each relay and ground. This shunts high frequency signals to earth. Another method is to use a low value resistor of about 1k. This will shunt interference and hum, but will shunt the speech signal as well. However as the output impedance of each mic preamp is low, and the speech signals are also low,this will have little effect on speech but reduce interference to an acceptable level.

    Source:  www.zen22142.zen.co.uk 

    Doorphone Intercom

    Skema Rangkaian Interkom Pintu Sederhana
    Description:

    Kumpulan Skema Elektronika- Interkom Pintu Sederhana,

    A simple Intercom made with a single transistor and low power audio amplifier LM386. The circui uses 8 ohm speakers, which also double as a microphone.

    Circuit:
    For the first time, this circuit was is a Canadian/English design and designed by Mr Laurier Gendron of Burnaby in British Columbia, Canada, and myself. Please make sure you visit Laurier's web site, Handy Dandy Little Circuits. This page is also available in French by clicking on the flag.


    In this doorphone circuit, an 8 ohm speaker is used both as a microphone and also an output device. The BC109C stage amplifies in common base mode, providing low input impedance to match the speaker and good voltage gain.
    The 270k resistor provides simple DC bias and the load resistor is 27k. The speaker produces a weak varying DC output when used as a microphone typically several 100uV. This varying DC signal must be separated from the fixed DC bias voltages and this is done by the 100u and 0.47u capacitors.
    An LM386 is used in non-inverting mode as a power amplifier to boost voltage gain and drive the 8 ohm speaker. The 10k potentiometer acts as the volume control, and overall gain may be adjusted using the 5k preset. The gain of the LM386 can be as high as 200, this is required because of the small audio signal from the speaker. The double pole double throw switch, reverses the loudspeaker positions, so that one is used to talk and the other to listen. Manually operating the switch (from inside the house) allows two way communication.

    Source:  www.zen22142.zen.co.uk

    Soft Start For Switching Power Supply

    extremecircuits.net
    Switching power supply whose output voltage is appreciably lower than its input voltage has an interesting property: the current drawn by it is smaller than its output current. However, the input power (UI) is, of course, greater than the output power. There is another aspect that needs to be watched: when the input voltage at switch-on is too low, the regulator will tend to draw the full current. When the supply cannot cope with this, it fails or the fuse blows. It is, therefore, advisable to disable the regulator at switch-on (via the on/off input). until the relevant capacitor has been charged. When the regulator then starts to draw current, the charging current has already dropped to a level which does not overload the voltage source.

    Circuit diagram:

    Soft Start Circuit For Switching Power Supply

    The circuit in the diagram provides an output voltage of 5 V and is supplied by a 24 V source. The regulator need not be disabled until the capacitor is fully charged: when the potential across the capacitor has reached a level of half or more of the input voltage, all is well. This is why the zener diode in the diagram is rated at 15 V. Many regulators produced by National Semiconductor have an integral on/off switch, and this is used in the present circuit. The input is intended for TTL signals, and usually consists of a transistor whose base is accessible externally. This means that a higher switching voltage may be applied via a series resistor: the value of this in the present circuit is 22 kΩ. When the voltage across the capacitor reaches a level of about 17 V, transistor T1 comes on, whereupon the regulator is enabled.
    Source: National Semiconductors

    extremecircuits.net
    Here is the circuit diagram of regulated power supply. It is a small power supply that provides a regulated voltage, adjustable between 1.5 and 35 volts at 1 ampere. This circuit is ready to use, you just need to add a suitable transformer. This circuit is thermal overload protected because the current limiter and thermal overload protection are included in the IC.



    Picture of the circuit:
     1A 1.5 volt to 35 volt dc Regulated Power Supply Circuit Schematic
    1A Regulated Power Supply Circuit Schematic


    Circuit diagram:
     1A 1.5 volt to 35 volt dc Regulated Power Supply Circuit Diagram
    1A Regulated Power Supply Circuit Diagram


    Transformer selection chart:
      Transformer Selection Chart for 1A 1.5 volt to 35 volt dc Regulated Power Supply Circuit Diagram
    Transformer selection Guide-Table For Power Supply


    Parts:

    IC = LM317
    P1 = 4.7K
    R1 = 120R
    C1 = 100nF - 63V
    C2 = 1uF - 35V
    C3 = 10uF - 35V
    C4 = 2200uF - 35V
    D1-D4 = 1N4007



    Features:
    • Just add a suitable transformer (see table)
    • Great to power your projects and save money on batteries
    • Suitable as an adjustable power supply for experiments
    • Control DC motors, low voltage light bulbs, …



    Specifications :
    • Preset any voltage between 1.5 and 35V
    • Very low ripple (80dB rejection)
    • Short-circuit, thermal and overload protection
    • Max input voltage : 28VAC or 40VDC
    • Max dissipation : 15W (with heatsink)
    • Dimensions : 52x52mm (2.1” x 2.1”)



    Technical Specifications
    • Input Voltage = 40Vdc max Transformer
    • Output Voltage = 1.5V to 35Vdc
    • Output Current = 1.5 Amps max.
    • Power Dissipation = 15W max (cooled)



    Note:
    • It has not to be cooled if used for small powers. 28 Volt AC max is allowed for the input voltage.

    Rangkaian Power Amplifier 1000 Watt

    Kumpulan Skema Elektronika. This is a audio power amplifier Blazer circuit provides up to 1000Watt . This interesting routes many good bass and treble alive. Importantly should choose Power supply source, which has been fairly high voltage class 70Vdc GND -70V 10A is the current low level
    Rangkaian Power Amplifier Blazer 1000 WattSkema Rangkaian Power Amplifier Blazer 1000 Watt

    The transistors are 2SC3858 (NPN) and 2SA1494 (PNP), and feature high bandwidth, excellent safe operating area, high linearity and high gain. Driver transistors are 2SC5200 (NPN) and 2SA1943 (PNP). All devices are rated at 230V, with the power transistors having a 150W dissipation and the drivers are 50W.

    This circuit describes an amplifier, power supply and tests procedures that are all inherently dangerous. Nothing described in this article should even be considered unless you are fully experienced, know exactly what you are doing, and are willing to take full 100% responsibility for what you do. There are aspects of the design that may require analysis, fault-finding and/or modification.

    Kumpulan Skema Elektronika. These amplifiers circuit can be used for virtually any application that requires high performance, low use Noise, distortion and excellent sound quality. Examples would be subwoofer amplifier should FOH stage Amplifiers, surround a canal a very powerful sound amplifier, etc. The 400W MOSFET-amplifier has four key stages of amplification. We are looking to start any Phase appropriate detail.
    Rangkaian 400W MOSFET  AmplifierSkema Rangkaian 400W MOSFET Amplifier

    Note:
    • Use + /-70V 10A DC dual supply for powering the circuit.
    • For L1 make 12turns of enameled copper wire on a 1cm him: plastic formers.
    • use 8 x IRFP448 MOSFETs in the final stages
    • Heat sink is Necessary for the MOSFETs. A 8x4x4 inch finned aluminum heat sink will do. There is no such thing as a heat sink That is too large.

    As the name suggests All Q ,C and ZD the Bias and buffer phases. Its main goal is to provide a stable MOSFET Gates and offset voltage and the voltage buffer amplifier stage of the High Resource capacity. What would have without the phase response and the effect Slew rate is indeed very bad. The flip side of the coin is not the extra step Introduction of an additional dominant pole in the amplifier feedback loop.

    Also to what the name suggests this stage converts the voltage developed in the VAS and provides all the amps required to drive at 8 or 4 ohms. 2-ohm loads are possible for several minutes at a time. In fact, I have tested more than 1600 1kW amplifier Watts RMS at 2 ohms. But that would not be recommended as a long-term exposure at all. If it is higher than the figures of the STI-amp. Power to the AV amplifier 800 The components of the power for this amplifier are as follows, and are favored A channel or a power module alone. 1 toroidal transformer with a rating of 1kVA. Primary windings are made to fit

    Rangkaian Lampu Darurat 12V 40W | Emergency Light Circuit

    Rangkaian ini merupakan proyek dengan biaya murah dan mempunyai fungsi yang sangat besar.
    Rangkaian sederhana ini mampu menghidupkan lampu neon sampai dengan 40 Watt yang berfungsi untuk penerangan darurat disaat aliran listrik PLN mati.

    Raangkaian Lengkap:

    Skema Rangkaian Lampu Darurat


    Gambar Cara Melilit Kawat


    Komponen yang dibutuhkan sebagian dapat menggunakan dari barang-barang bekas yaitu :
    1. Lempeng pendingin dari plat metal ukuran 3 x 4 cm dapat diperoleh dari flat bekas dengan ketebalan kira-kira 1mm
    2. Batang Ferrit diperoleh dari bekas radio mw atau radio sw. (radio jadul bekas kakek dan nenek lho  Grin).
    3. Kawat email bisa diperoleh dari trapo balast.
    4. Baut ukuran kecil secukupnya.
    5. Accu Mobil atau Motor.
    6. Kertas Koran secukupnya.
    7. Lem kuning
    8. Kotak sabun atau apa saja untuk penempatan rangkaian.
    9. Timah Solder Secukupnya.
    10. Kabel Secukupnya.

    Komponen Elektronik.
    1. Transistor TIP 3055.
    2. Resistor 180K.
    3. Resistor 47K.
    4. Capacitor 100 nf.
    5. Capacitor 100 uf.

    Cara membuat Lilitan lihat gambar ilustrasi).
    1. Bungkus batang ferite dengan kertas lalu lilitkan kawat sebanyak 58 lilitan denga jarak renggang.
    2. Setelah selesai membuat lilitan 1 kemudian bungkus lagi dengan kertas koran lalu lilitkan kawat sebanyak 13 lilitan dengan jarak yang lebih renggang.
    3. Bungkus kembali lapisan ke dua dan terakhir lilitkan kawat sebanyak 450 lilitan dengan jarak sangat rapat lilitan.
    4. Supaya Lilitan kuat dan tidak berubah bisa disiram dengan lem.
    5. ujung-ujung kawat untuk penyolderan haraf diperhatikan titik-titik nya dan harus di kelupas lapisan emailnya.

    Source: http://forum.terserahlu.us

    Rangkaian Pembangkit Listrik Tenaga Surya.
    Untuk memanfaatkan sinar matahari yang terus menerus menyinari bumi bisa kita manfaatkan untuk dijadikan sumber listrik sehingga kita setidaknya bisa menghemat pemakaian listrik yang terus menerus harganya mengalami kenaikan, dibawah ini adalah salah satu rangkaian Pembangkit Listrik sederhana yang bisa anda buat dan dimanfaatkan untuk mengisi Aki motor anda atau untuk lampu emergency.

    Skema Rangkaian Pembangkit Listrik Tenaga Surya

    Cara Kerja Rangkaian:
    Sinar Matahari diterima oleh panel surya kemudian diolah menjadi tenaga listrik, namun tenaga listrik yang dihasilkan dari setiap panel nya masih terlalu kecil dimana dengan 8 Cell Panel yang dirangkai secara seri hanya mampu mrnghasilkan tegangan kurang lebih 4 Volt dengan arus 200 mA.
    nah oleh karena itu diperlukan suatu rangkaian elektronik untuk meningkatkan tegangan dan arus yang cukup untuk dijadikan sebagai Charger Baterai.
    Rangakain Elektronik bertindak sebagai rangkaian Inverter DC ke DC (DC to DC Inverter), yang dibangun oleh 2 buah Capacitor, 1 Resistor, 1 Transistor, 1 Dioda, dan sebuah kumparan yang merupakan titik keberhasilan pembuatan rangkaian ini.

    Rangkaian dibangun dengan system oscilator tunggal (BLOCKING OSCILLATOR) yang dibangun oleh transistor dan sebuah kumparan dimana pada lilitan primer berjumlah 45 lilitan dan 15 lilitan di sekunder sebagai umpan balik untuk memberikan tegangan di basis transistor output dari lilitan primer di hubungkan dengan dioda dan di pakai untuk pengisian Baterai.

    Bila rangkaian ini digabungkan dengan Lampu Neon Darurat maka tentunya akan mendapatkan tegangan yang cukup untuk penerangan di malam hari secara gratis. karena pada siang hari nya accu di charge oleh matahari.

    Keberhasilan dari experimen ini adalah cara pembuatan kumparan dimana cara nya sama dengan topik Lampu neon darurat
    .
    Daftar Komponen
    • 8 cell panel surya 0.5v 200 mA (banyak dijual di toko-toko elektronik) atau manfaatkan solar panel bekas kalkulator yang sudah rusak/tidak terpakai lagi anda bongkar dan ambil solarcell nya
    • Capacitor 100 uF
    • Capacitor 10 uF
    • Transistor TIP 31 atau yang sejenis
    • Resistor 1 K
    • Dioda BY 207 (Diada 5 Ampere) atau yang sejenis
    • Accu Motor.
    • Kurang lebih 3 meter kawat email diameter 0.25 mm.
    • Batang Ferite yang biasa di pakai di radio-radio AM.

    Skema Rangkaian Sensor Parkir dengan Infra Merah. This circuit can be used for an assist in parking the car near the garage wall backing up Pls. LED D7 illuminates Pls bumper-wall distance is about 20 cm., D7 + D6 illuminate at about 10 cm. and D7 + D6 + D5 at about 6 cm. In this manner you are alerted Pls approaching too close to the wall.

    Car Parking Sensor circuit

    All distances mentioned before can vary, depending on infra-red transmitting and receiving LEDs used and are mostly affected by the color of the reflecting surface. Black surfaces lower greatly the device sensitivity. Obviously, you can use this circuit in other applications like liquids level detection, proximity devices etc.

    Note:
    • The infra-red Photo Diode D2, should be of the type incorporating an optical sunlight filter: these components appear in black plastic cases. Some of them resemble TO92 transistors: in this case, please note that the sensitive surface is the curved, not the flat one.
    • Avoid sun or artificial light hitting directly D1 & D2.
    • If your car has black bumpers, you can line-up the infra-red diodes with the (mostly white) license or number plate.
    • It is wiser to place all the circuitry near the infra-red LEDs in a small box. The 3 signaling LEDs can be placed far from the main box at an height making them well visible by the car driver.
    • The best setup is obtained bringing D2 nearer to D1 (without a reflecting object) until D5 illuminates; then moving it a bit until D5 is clearly off. Usually D1-D2 optimum distance lies in the range 1.5-3 cm.
    List Component of Car Parking Sensor circuit:
    R1             : 10K
    R2,R5,R6,R9 : 1K
    R3 : 33R
    R4,R11 : 1M
    R7 : 4K7
    R8 : 1K5
    R10,R12-R14 : 1K
    C1,C4 : 1µF/63V
    C2 : 47pF
    C3,C5 : 100µF
    D1 : Infra-red LED
    D2 : Infra-red Photo Diode (see Notes)
    D3,D4 : 1N4148
    D5-7 : LEDs (Any color and size)
    IC1 : NE555
    IC2 : LM324
    IC3 : LM7812

    Rangkaian Lampu sein sepeda motor unik

    Rangkaian Lampu Sein Sepeda Motor. Lampu Sein akan lebih indah apabila kita modif sedemikian rupa supaya kelihatannya lebih menarik apalagi dibuat sendiri membuat perasaan lebih bangga dan ini bisa menjadi proyek bisnis buat anda yang hobi memodifikasi sepeda motor atau yang lainnya. Rangkaian ini sangat sederhana dan sangat mudah cara pembuatannya.

    Skema Rangkaian Lampu Sein Sepeda Motor
    Rangkaian ini sangat irit pemakaian arusnya sehingga Accu anda tidak akan cepat habis atau soak, komponen yang diperlukan sangat mudah sekali untuk didapatkan. Satu Rangkaian hanya untuk satu sisi.
    Hasilnya kira2 akan seperti ini:

    Contoh Hasilnya

    Rangkaian Alarm Sepeda Motor | Pengaman Sepeda Motor ini sangat bermanfaat sekali untuk mengamankan sepeda motor kesayangan anda, orang lain tidak akan bisa mengoperasikannya meskipun kita berikan kunci motornya yang ada hanya alarm yang berbunyi namun motornya tidak bisa dioperasikan baik dengan starter maupun dengan kick starter, sehingga pencuri pun akan kaget dan segera meninggalkan motor anda. Hanya anda sendiri yang bisa mengoperasikannya karena sensor penggeraknya ada pada anda.


    Skema Rangkaian Alarm Sepeda Motor

    Penyambungan Kabel
    A  : Ke Accu
    B  : Ke kontak setelah dipotong
    C  : Ke Pulser
    D  : Ke sistem pengapian CDI, elektrik starter, lampu rem, lampu sign dsb.
    E  : Ke massa

    CARA KERJA RANGKAIAN :
    Rangkaian dibuat sedemikian rupa sehingga saat standby maupun saat dioperasikan betul-betul tidak berpengaruh terhadap kinerja sepeda motor tersebut. Rangkaian akan bekerja saat kontak di ON kan.
    Saat kunci kontak di ON kan arus dari accu melalui kunci kontak dan S2 akan langsung ke alarm (AL) yang dikendalikan oleh SCR 2P4M.
    Sementara itu secara bersamaan arus juga akan ke titik B dan ke gate SCR melalui resistor 47 K ohm yang akan memicu SCR dan langsung akan menyebabkan SCR tersebut bekerja. Dengan demikian SCR akan ON dan alarm (AL) akan mendapat tenaga dan berbunyi.
    Meskipun kontak di OFF kan sirine akan tetap dioperasikan karena SCR mengunci (laching). Bersamaan dengan itu rangkaian relay yang dikendalikan oleh transistor 1 dan 2 belum bekerja, sehingga titik C yang dihubungkan ke pulser sepeda motor tetap akan di hubung singkatkan ke ground melalui S2. (untuk sepeda motor dengan pengapian DC, titik C boleh ditiadakan).
    Hal ini memungkinkan sepeda motor tidak akan dapat di start baik dengan elektrik maupun kick starter.
    Uraian di atas sangat jelas merupakan langkah pengamanan sepeda motor, alarm (AL) berbunyi sementara motor tidak dapat dioperasikan.
    Untuk mengoperasikannya kontak harus di ON kan lagi bersamaan dengan mendekatkan magnet pada reed switch.
    Reed switch akan dihubungkan dan melalui resistor 47 K ohm, reed switch dan resistor 1 K ohm akan ke basis transistor 1 dan sekaligus meng ON kan transistor 1, demikian juga transistor 2.
    Dengan ON nya transistor 1 dan 2 menyebabkan relay mendapat tenaga, dan kontak-kontak pada relay akan berpindah posisi.
    Tegangan yang pada mulanya ke alarm (AL) akan diputuskan sehingga alarm berhenti, bersamaan dengan itu pulser juga diputuskan dari ground.
    Hal lain yang terjadi titik D akan dihubungkan dengan tegangan dari accu yang berfungsi mengunci kerja transistor 1 dan 2 dan sekaligus memberikan tegangan pada sistem kelistrikan pada sepeda motor tersebut, misalnya elektrik stater, pengapian CDI dll.

    CARA PENGOPERASIAN
    Untuk menyalakan sepeda motor tempatkan magnet kecil pada tempat sensor (reed switch) bersamaan dengan meng ON kan kunci kontak.
    Sesaat setelah di ON kan akan terdengar alarm berbunyi tetapi hanya sesaat saja, dan sepeda motorpun siap untuk dioperasikan.

    PERAKITAN DAN PENEMPATAN RANGKAIAN
    Rangkaian harus dirangkai dan dikemas sedemikian rupa sehingga tahan terhadap guyuran air terutama pada saat sepeda motor tersebut dicuci.
    Untuk menempatkan rangkaian harus ditempatkan pada tempat yang tidak mudah untuk dibongkar dan sifatnya rahasia terutama tempat sesor (reed switch) sehingga hanya kita yang dapat mengetahui dan mengoperasikan sepeda motor tersebut.

    Untuk sepeda motor jenis Mio pengalaman saya Sensor Reed Switch disimpan dibawah injakan kaki. Penutup bawah injakan bisa anda buka untuk menanam sensor didalamnya, sehingga aman dari guyuran air saat motor dicuci. Untuk magnet sebagai penggerak Relay Reed Switch simpan dibawah sendal atau sepatu, sehingga orang lain tdk tahu penggeraknya ada dimana. Pengalaman saya lucu juga ketika orang lain saya suruh starter namun gak bisa bisa padahal ya itu tadi orang lain tidak punya magnet dibawah sendalnya..haha..

    Selamat Mencoba, Semoga berhasil!!

    Rangkaian detektor kebohongan / Lie Detector Circuit Diagram

    This lie detector circuit can be built in a few minutes, but can be incredibly useful when you want to know if someone is really telling you the truth. It is not as sophisticated as the ones the professionals use, but it works. It works by measuring skin resistance, which goes down when you lie.

    Skema Rangkaian Detektor Kebohongan

    Parts List:
    R1 – 33K 1/4W Resistor
    R2 – 5K Pot
    R3 – 1.5K 1/4W Resistor
    C1 – 1uF 16V Electrolytic Capacitor
    Q1 – 2N3565 NPN Transistor
    M1 – 0-1 mA Analog Meter
    MISC – Case, Wire, Electrodes (See Notes)
    Notes:
    1. The electrodes can be alligator clips (although they can be painful), electrode pads (like the type they use in the hospital), or just wires and tape.
    2. To use the circuit, attach the electrodes to the back of the subjects hand, about 1 inch apart. Then, adjust the meter for a reading of 0. Ask the questions. You know the subject is lying when the meter changes.
    Source: Lie Detector circuit

    Gold detector circuit

    Rangkaian Detektor Emas. Here the very simple and easy build gold detector circuit. The circuit capable to sense gold or metal or coins from a distance of about 20cm, depending on the size of the object to detect.
    The circuit oscillates at about 140kHz and a harmonic of this frequency is detected by an AM radio. You can simply tune the radio receiver until a squeal is detected.
    When the search coil is placed near a metal object, the frequency of the circuit will change and this will be heard from the speaker of AM radio.

    Below image is the construction of the circuit, you will see that the radio is placed on the hand stick of the complete detector.

    Skema Rangkaian Gold Detector


    Lay out Gold Detector-2


    PARTS LIST
    :

    1 - 220R (red-red-brown-gold)
    1 - 47k (yellow-purple-orange-gold)
    2 - 1n greencaps (102)
    1 - 4n7 greencap (472)
    1 - 10n greencap (103)
    1 - 47u electrolytic
    1 - BC 547 transistor
    1 - slide switch
    1 - 9v battery snap
    1 - 9v battery
    6.5m winding wire (gauge not critical)

    Kumpulan Skema Elektronika, A normal variable resistor cannot directly control the speed of a motor since motors draw large amounts of current which would burn out the potentiometer. Instead, the small amount of current that the potentiometer can pass can be amplified into order to run the motor. This amplification can be achieved using Darlington Pair of transistors.

    Rangkaian Pengendali Motor DC
    Pin-out BFY61 & TIP31C Transistor

    The circuit above shows a linear potentiometer connected Between Vs and 0V Such That the voltage at its wiper terminal will of always be somewhere at or Between these two voltages. The small amount of current flowing out of the potentiometer's wiper is amplified by two transistors, connected together in a configuration known as a 'Darlington pair'. The current from the potentiometer is amplified by the first transistor, and then again by the second transistor, greatly Increasing the amount of current That cans be controlled by the potentiometer.

    There are, however, a couple of disadvantages of this simple circuit. Firstly, about 0.7V is lost in EACH of the transistor, so the maximum voltage cans That ever be applied to the motor is Vs - 1.4V. Secondly, the transistors are not absolutely linear so the change in motor speed for a given rotation of the potentiometer will from some more subtle in the middle of its range. Because a motor is an inductive load, it will from Produce a 'back-emf' Could the which damage to the second transistor. The 1N4148 signal diode prevents this damage by shorting out the back-emf.

    The power supply for this circuit should preferably be un-smoothed (i.e. directly from the power supply rectifier). This helps prevent the motor 'sticking' at low speeds. With the TIP31C transistor given, the maximum power supply voltage may be 60V and the maximum motor current consumption may be 3A.

    Source: www.eleinmec.com

    Rangkaian Timer On-Off 24 Jam

    Timer On-off 24 Jam. This is a circuits are multi-range timers offering periods of up to 24 hours and beyond. This circuit can be used as repeating timers - or as single-shot timers


    Skema Rangkaian On/Off 24 Hours Timer

    The Cmos 4060 is a 14-bit binary counter. However - only ten of those bits are connected to output pins. The 4060 also has two inverters - connected in series across pins 11, 10 & 9. Together with R3, R4, R5 and C3 - they form a simple oscillator.

    While the oscillator is running - the 14-bit counter counts the number of oscillations - and the state of the count is reflected in the output pins. By adjusting R4 you can alter the frequency of the oscillator. So you can control the speed at which the count progresses. In other words - you can decide how long it will take for any given output pin to go high.

    When that pin goes high - it switches the transistor - and the transistor in turn operates the relay. In single-shot mode - the output pin does a second job. It uses D1 to disable the oscillator - so the count stops with the output pin high.

    If you want to use the timer in repeating mode - simply leave out D1. The count will carry on indefinitely. And the output pin will continue to switch the transistor on and off - at the same regular time intervals.

    Note:
    • Using "Trial and Error" to set a long time period would be very tedious. A better solution is to use the Setup tables provided - and calculate the time required for Pin 7 to go high. For example, if you want a period of 9 Hours - the Range table shows that you can use the output at Pin 2. You need Pin 2 to go high after 9 x 60 x 60 = 32 400 seconds. The Setup table tells you to divide this by 512 - giving about 63 seconds. Adjust R4 so that the Yellow LED lights 63 seconds after power is applied. This will give an output at Pin 2 after about 9 Hours.
    • Ideally C3 should be non-polarized - but a regular electrolytic will work - provided it doesn't leak too badly in the reverse direction. Alternatively - you can simulate a non-polarized 10uF capacitor by connecting two 22uF capacitors back to back
    • The timers were designed for a 12-volt supply. However - provided a suitable relay is used - both circuits will work at anything from 5 to 15-volts. Applying power starts the timer. And it can be reset at any time by a brief interruption of the power supply.
    Sorcer: http://www.zen22142.zen.co.uk/

    Skema Rangkaian 220V Lamp Flasher. The 220V Lamp Flasher circuit basically is a line powered flasher which can be used in many applications such as the Chritmas lamp. Below is the circuit schematic diagram:



    Skema Rangkaian 220V Lamp Flasher

    Note:
    • Input supply - 6 ~ 12 VDC
    • Output - upto 200 W lamp / bulb load
    • Optically isolated Mains supply
    • Onboard preset to adjust the frequency (speed) of flashing (1 Hz to 5 Hz)
    • Power Battery Terminal (PBT) for easy input 230 VAC mains and load connection
    • Terminal pins for connecting DC power supply
    • Four mounting holes of 3.2 mm each
    • List Componet of 220V Lamp Flasher circuit
    • CN1: 6 V to 12 VDC voltage source
    • C1: 10uF/25V capacitor elektrolit
    • C2: 0.22uF/275V capacitor elektrolit
    • C3: 47uF/25V capacitor elektrolit
    • C4: 0.1uF/25V capacitor elektrolit
    • D1: LED
    • D2, D3: 1N4148 Dioda
    • PR1: 100K Variable resistor
    • PR2: 50K Variable resistor
    • Q1: TIC226 Triac
    • R1: 2k2 resistor 1/2 watt
    • R2, R5: 1K resistor 1/2 watt
    • R3: 180E resistor 1/2 watt
    • R4: 680E resistor 1/2 watt
    • U1: LM555 IC timer
    • U2: MOC3021
    • V1: 230V AC input
    • Z1: 100W Load
    Dangerous...!!
    This circuit directly connected to the netting of electricity, voltage 220V electricity it could sting you. Avoid working in damp and directly with ground

    Rangkaian Alarm Freezer

    Here is a simple freezer alarm circuit, but ultra sensitive with a buzzer. The circuit raises an audio alert when the temperature inside the freezer box goes up above a preset level. The circuit requires 9V dc supply and can power from a standard 9V alkaline battery.
    A negative temperature co-efficient type (NTC type) small thermistor (R1) here works as the freezer status sensor. Related components (T1 and T2) are used to drive a 6 to 9V rated mechanical buzzer. When the sensor detects a temperature shoot, the buzzer starts beeping and remains in that condition, till power to the circuit is removed. For this on/off plus reset function any small dc toggle switch can be inserted at the positive rail.

    Skema Rangkaian Alarm Freezer

    Rangkaian Toggle Switch

    This circuit will energize and de-energize a relay at the push of a button. Any type of momentary action push-to-make switch can be used. Pushing the button once - will energize the relay. And pushing it a second time - will de-energize the relay

    Skema Rangkaian Toggle Switch


    I've drawn the circuit with a single pole relay. But you can use a multi-pole relay if it suits your application. Only one half of the Cmos 4013 is used. So you could construct two independent toggle switches with a single IC. The circuit will work at anything from 5 to 15-volts. All you need do is select a relay with a coil voltage that suits your supply.

    The LED provides a visual indication that the relay is energized. In effect - it tells you whether the switch is on or off. It's not necessary to the operation of the circuit. If you wish you may leave out R3 and the LED.
    Source: http://www.zen22142.zen

    Rangkaian Lampu LED sederhana untuk Sepeda Motor

    Skema Rangkaian Lampu LED
    Lamp type LED has several advantages compared with the usual light when the applied on a motorcycle.
    In addition to more efficient battery when compared with normal hologen lamps, LED also has several other advantages, such as light more evenly and provide a luxurious feel to the vehicle.


    The following are examples of simple creations that you can apply to decorate your motorcycle using the LED.
    Lampu LED Untuk MotorRangkaian Lampu LED Untuk Sepeda Motor

    For this circuit is recommended only as a replacement motorcycle brake lights or city lights with the electrical source from the battery. Indeed in the market has many available variations of LED lights that can be used as brake lights or disco lights, but maybe some people would be proud if his own creative, hopefully circuit schemes that we present above can assist you in creating.

    The following examples of applications that we apply to motorcycles mio


    Lampu LED Untuk Motor
    Lampu LED Untuk Motor

    Skema Rangkaian Indikator Ketinggian Air

    By means of a Relay, employed to drive a water pump, this circuit provides automatic level control of a water reservoir or well.


    Skema Rangkaian Indikator Ketinggian Air


    Note:
    • The two steel rods must be supported by a small insulated (wooden or plastic) board.
    • The circuit can be used also with non-metal tanks, provided a third steel rod having about the same height of the tank will be added and connected to the circuit's negative ground.
    The shorter steel rod is the "water high" sensor, whereas the longer is the "water low" sensor. When the water level is below both sensors, IC1C output (pin #10) is low; if the water becomes in contact with the longer sensor the output remains low until the shorter sensor is reached. At this point IC1C output goes high, Q1 conducts, the Relay is energized and the pump starts operating.
    Now, the water level begins to decrease and the shorter sensor will be no longer in contact with the water, but IC1C output will be hold high by the signal return to pin #5 of IC1B, so the pump will continue its operation. But when the water level falls below the longer sensor, IC1C output goes low and the pump will stop.
    SW1 is optional and was added to provide reverse operation. Switching SW1 in order to connect R3 to pin #11 of IC1D, the pump will operate when the reservoir is nearly empty and will stop when the reservoir is full. In this case, the pump will be used to fill the reservoir and not to empty it as in the default operating mode.

    List Component
    • R1,R2: 15K 1/4W Resistors
    • R3: 10K 1/4W Resistor
    • R4: 1K 1/4W Resistor
    • D1: LED
    • D2: 1N4148 Diode
    • IC1: 4001
    • Q1: BC337 NPN Transistor
    • SW1: witch
    • RL1: Relay with SPDT 2A @ 230V switch, Coil Voltage 12V

    Saklar Genset Otomatis

    Pembuatan Saklar Genset Otomatis ini di ilhami ketika PLN padam seringkali saya tidak tahu bahwa PLN telah hidup kembali atau telah menyala kembali sementara genset menyala terus sampai bensinnya habis, dipikir pikir sayang listrik pakai bensin kan lebih mahal ketimbang harga Listrik PLN belum lagi Genset akan lebih cepat rusak dan panas kalau nyalanya lebih lama. Oleh karena itu saya mencoba membuat rangkaian yang sangat sederhana ini yang cuma mengandalkan satu komponen saja yaitu Relay.
    Setelah dipasang rangkaian ini sekarang tidak lagi memperhatikan apakah PLN sudah hidup kembali atau belum, karena secara otomatis Listrik dari genset berpindah lagi ke PLN ketika PLN hidup kembali dan Genset otomatis mati sendiri.


    Rangkaian Saklar Genset Otomatis
    Foto Rangkaian Genset Otomatis
    Relay Omron MK2P 220Vac

    Komponen:
    • Satu buah Relay Omron type MK2P 220vac
    • Soket Relay
    Cara Kerja :
    Ketika PLN mati maka Relay tidak mendapat tegangan dan Saklar Relay S3 bergerak dan listrik akan mendapat pasokan dari Genset kemudian kita nyalakan Genset dan saklar sudah siap pada posisi on (dalam hal ini posisi On genset biasanya dalam keadaan terbuka). Setelah Listrik PLN hidup kembali maka Relay akan mendapat tegangan dan pasokan listrik akan berpindah secra otomatis ke jaringan PLN di saklar S3  dan saklar S1 akan mematikan Genset. Pengalaman saya pemakaian alat ini sudah hampir 1 tahun blom ada kerusakan pada relay, daya listrik 2200 Watt.
    Selamat Mencoba, semoga bermanfaat...

    Symbol komponen Listrik dan elektronik ini diperlukan ketika kita ingin membuat sebuah rangkaian atau memperbaiki sebuah alat yang berhubungan dengan listrik atau elektronik sehingga bisa ditelusuri bagian yang rusak untuk diperbaiki atau diganti komponennya. Dibawah ini adalah sebagian contoh sambungan dan komponen yang berhubungan dengan listrik dan elektronik:



    SIMBOL NAMA KOMPONEN KETERANGAN
    Simbol Sambungan
    Simbol Kabel Kabel/ Wire Listrik Kabel penghubung (konduktor)
    Simbol Kabel Terhubung Koneksi kabel Terhubung
    Simbol Kabel Tak terhubung Kabel tidak koneksi Terputus (tidak terhubung)
    Simbol Saklar (Switch) dan Simbol Relay
    Simbol Saklar Toggle Switch SPST Terputus dalam kondisi open
    Simbol Saklar Toggle Switch SPDT Memilih dua terminal koneksi
    Simbol Saklar Saklar Push-Button (NO) Terhubung ketika ditekan
    Simbol Saklar Saklar Push-Button (NC) Terputus ketika ditekan
    Simbol Saklar DIP Switch Multiswitch(Saklar banyak)
    Simbol Saklar Relay SPST Koneksi (Open dan Close) digerakan oleh elektromagnetik.
    Simbol Saklar Relay SPDT
    Simbol Saklar Jumper Koneksi dengan pemasangan jumper
    Simbol Saklar Solder Bridge Koneksi dengan cara disolder
    Simbol Ground
    Simbol Ground Earth Ground Referensi 0 sebuah sumber listrik
    Simbol Ground Chassis Ground Ground yang dihubungkan pada body sebuah rangkaian listrik
    Simbol Ground Common/ Digital Ground
    Simbol Resistor
    Simbol Resistor Resistor Resistor berfungsi untuk menahan arus yang mengalir dalam rangkaian listrik
    Simbol Resistor Resistor
    Simbol Potensio Potensio Meter Menahan arus dalam rangkaian listrik tetapi nilai resistansi dari 3 titik terminal dapat diatur
    Simbol Potensio Potensio Meter
    Simbol Variable Resistor Variable Resistor Menahan arus dalam rangkaian listrik tetapi nilai resistansi dari 2 titik terminal dapat diatur
    Simbol Variable Resistor Variable Resistor
    Simbol Condensator (Kapasitor)
    Simbol Condensator Condensator Bipolar Berfungsi untuk menyimpan arus listrik sementara waktu
    Simbol Condensator Condensator Nonpolar
    Simbol Condensator Condensator Bipolar Electrolytic Condensator (ELCO)
    Simbol Condensator Kapasitor berpolar Electrolytic Condensator (ELCO)
    Simbol Condensator Kapasitor Variable Condensator yang nilai kapasitansinya dapat diatur
    Simbol Kumparan (Induktor)
    Simbol Lilitan Induktor, lilitan, kumparan, spul, coil Dapat menghasilkan medan magnet ketika dialiri arus listrik
    Simbol Lilitan Induktor dengan inti besi Kumparan dengan inti besi seperi pada trafo
    Simbol Lilitan Variable Induktor Lilitan yang nilai induktansinya dapat diatur
    Simbol Power Supply
    Simbol Power Supply Sumber tegangan DC Menghasilkan tegangan searah tetap (konstan)
    Simbol Power Supply Sumber Arus Menghasilkan sumber arus tetap
    Simbol Power Supply Sumber tegangan AC Sumber teganga bolak-balik seperti dari PLN (Perusahaan Listrik Negara)
    Simbol Power Supply Generator Penghasil tegangan listrik bolah-balik seperti pembangkit listrik di PLN (Perusahaan Listrik Negara)
    Simbol Battery Battery Menghasilkan tegangan searah tetap
    Simbol Battery Battery lebih dari satu Cell Menghasilkan tegagan searah tetap
    Simbol Regulator Sumber tegangan yang dapat diatur Sumber tegangan yang berasal dari rangkaian listrik lain
    Simbol Regulator Sumber arus yang dapat diatur Sumber arus yang berasal dari rangkaian listrik lain
    Simbol Meter (Alat Ukur)
    Simbol Volt Meter Volt Meter Mengukur tegangan listrik dengan satuan Volt
    Simbol Ampere Meter Ampere Meter Mengukur arus listrik dengan satuan Ampere
    Simbol Ohm Meter Ohm Meter Mengukur resistansi dengan satuan Ohm
    Simbol Watt Meter Watt Metter Mengukur daya listrik dengan satuan Watt
    Simbol Lampu
    Simbol Lampu Lampu Akan menghasilkan cahaya ketika dialiri arus listrik
    Simbol Lampu Lampu
    Simbol Lampu Lampu
    Simbol Dioda
    Simbol Dioda Dioda Berfungsi sebagai penyearah yang dapat mengalirkan arus listrik satu arah (forward bias)
    Simbol Dioda Zener Dioda Zener Penyetabil Tegangan DC (Searah)
    Simbol Dioda Schottky Dioda Schottky Dioda dengan drop tegangan rendah, biasanya terdapat dalam IC logika
    Simbol Dioda Varactor Dioda Varactor Gabungan Dioda dan Kapasitor
    Simbol Dioda Tunnel Dioda Tunnel Dioda Tunnel
    Simbol LED LED (Light Emitting Diode) Akan menghasilkan cahaya ketika dialiri arus listrik DC satu arah
    Simbol Photo Dioda Photo Dioda Menhasilkan arus listrik ketika mendapat cahaya
    Simbol Transistor
    Simbol Transistor NPN Transitor Bipolar NPN Arus listrik akan mengalir (EC) ketika basis (B) diberi positif
    Simbol Transistor PNP Transistor Bipolar PNP Arus listrik akan mengalir (CE) ketika basis (B) diberi negatif
    Simbol Transistor Darlington Transitor Darlington Gabungan dari dua transistor Bipolar untuk meningkatkan penguatan
    Simbol Transistor JFET N Transistor JFET-N Field Effect Transistor kanal N
    Simbol Transistor JFET P Transistor JFET-P Field Effect Transistor kanal P
    Simbol Transistor NMOS Transistor NMOS Transistor MOSFET kanal N
    Simbol Transistor PMOS Transistor PMOS Transistor MOSFET kanal P
    Simbol Komponen Lain
    Simbol Motor Listrik Motor Motor Listrik
    Simbol Trafo Trafo, Transformer, Transformator Penurun dan penaik tegangan AC (Bolak Balik)
    Simbol Bel Listrik Bel Listrik Berbunyi ketika dialiri arus listrik
    Simbol Buzzer Buzzer Penghasil suara buzz saat dialiri arus listrik
    Fuse, Sikring Pengaman. Akan putus ketika melebihi kapasitas arus
    Simbol Sikring Fuse, Sikring
    Simbol Bus Bus Terdiri dari banyak jalur data atau jalur address
    Simbol Bus Bus
    Simbol Bus Bus
    Simbol Opto Coupler Opto Coupler Sebagi isolasi antar dua rangkaian yang berbeda. Dihubungkan oleh cahaya
    Simbol Speaker Speaker Mengubah signal listrik menjadi suara
    Simbol Mic Mic, Microphone Mengubah signal suara menjadi arus listrik
    Simbol Op-Amp Op-Amp, Operational Amplifier Penguat signal input
    Simbol Schmitt Trigger Schmitt Trigger Dapat mengurangi noise
    Simbol ADC ADC, Analog to Digital Mengubah signal analog menjadi data digital
    Simbol DAC DAC, Digital to Analog Mengubah data digital menjadi signal analog
    Simbol Oscillator Crystal, Ocsilator Penghasil pulsa
    Simbol Antenna
    Simbol Antenna Antenna Pemancar dan penerima signa radio
    Simbol Antenna Antenna
    Simbol Antenna Dipole Antenna Gabungan dari simple Antenna
    Simbol Gerbang Logika (Digital)
    Simbol Gerbang NOT NOT Gate Output akan merupakan kebalikan input
    Simbol Gerbang AND AND Gate Output akan 0 jika salah satu input 0
    Simbol Gerbang NAND NAND Gate Output akan 1 jika salah satu input 0
    Simbol Gerbang OR OR Gate Output akan 1 jika salah satu input 1
    Simbol Gerbang NOR NOR Gate Output akan0 jika salah satu input 1
    Simbol Gerbang EX-OR EX-OR Gate Output akan 0 jika input sama
    SImbol D-Flip-Flop D-Flip-Flop Dapat berfungsi sebagai penyimpad data
    Simbol Multiplexer Multiplexer 2 to 1 Menyeleksi salah satu data input yang akan dikirim ke output
    Simbol Multiplexer Multiplexer 4 to 1
    Simbol D-Multiplexer D-Multiplexer 1 to 4 Menyeleksi data input untuk dikirim ke salah satu output


    Referensi gambar : RapidTables.com